« Back to News

Options for Dosing Genealogy

The following, written by ECS Solutions President Tim Matheny, was published in Automation World in April of 2019. The article can be seen HERE.

Batch manufacturing in Food and Pharmaceuticals requires knowing the genealogy, or history, of any ingredient materials. When the source container or vessel contains several lots of the ingredient material, the Control System Engineer must make some assumptions and do some math.

One choice, often referred to as plug flow, is to assume that there is no mixing between the lots—that they are stacked on top of each other in the vessel as if there were an invisible membrane between each consecutive lot. The control system assumes that until the volume or weight of lot “a” is dosed out, that lot, and only lot “a”, is being dosed. When lot “a” is gone, the control system assumes only lot “b” is being dosed. At most there will be one product batch with some of lot “a” and some of lot “b”. Risked recall cost, when this assumption is used, is very high because a significant number of batches/lots of product must be included due to the ridiculous underlying assumption. Generally, a plug flow assumption should not be used today.

Dosing genealogy might be determined by modifying the plug flow approach, assuming a band of mixing between consecutive ingredient material. Factors that affect the thickness of the mixing band include: how material is loaded into the vessel, the viscosity of the material, the shape of the vessel, time the lots have resided in the vessel, etc. Recall costs are appropriate because, in the case of a recall on ingredient lot “b”, only batches dosed from bands “a-b”, “b” and “b-c” need be recalled. This approach can be appropriate when ingredient mixing tendencies are well known.

A third approach assumes that the ingredient materials are fully mixed. Until the vessel is drained and cleaned, any dosing genealogy is assumed to include some of all ingredient material lots introduced into the vessel. When there is a long duration between drain-clean cycles, ingredient lot “a” is assumed to be in many product batches/lots, risking very high recall costs. Maintaining a short duration between drain-clean cycles is also expensive. Producers can be driven to designing a system utilizing single-ingredient-lot vessels or containers. This is a very safe approach that is often dictated.

A combination approach to determining dosing genealogy also assumes complete mixing of all ingredient lots in the source vessel. The dosing genealogy is assumed to be the percentage of each ingredient lot remaining in the vessel. Volumes removed for each ingredient lot are accumulated, much as with plug flow. At some small remaining amount, the ingredient lot is assumed to be completely removed from the vessel. This approach offers reasonable recall cost risk without necessitating drain-clean cycles, making it an attractive approach when the extremely safe third approach, above, is not dictated.

With only slightly more math, the Control System Engineer can determine dosing genealogy with any of these approaches while a new ingredient lot is being added to the vessel. Allowing material to enter and leave the vessel concurrently increases equipment availability and, often, overall system OEE.

A risk analysis process is used to choose how dosing genealogy should be determined in a specific situation. Factors mentioned above, and others, must be carefully considered. Producers who determine dosing genealogy appropriately balance risk and cost using engineering analysis to make the right assumptions and do the right math.

 

Posted In: Blogs, News